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the performance of the sign detector, through higher-order data quantization.

The fixed-threshold m-interval detector and the generalized sign detector
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using a conditional test are both nonparametric detectors which are fairly
simple to implement. In this paper we compare the asymptotic and finite-
sample, finite-signal performance characteristics of these two detectors,

and point out their relative advantages and disadvantages. —
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I. INTRODUCTION

For the detection of a deterministic signal in additive noise with

zero median, the sign detector is an easily implemented nonparametric
detector with a constant probability of type I error (false alarm). Let
X= (xl. X2, ..s,xn) be the vector of possibly signal-bearing observations,

so that

K,=W, +98g , i=1,2, ... , n, (1)
where @ > 0 and the W; are independent random variables representing noise.
We will denote by F and f the common probability distribution and density
functions, respectively, of the Wi. The signal components S; are assumed

to be non-zero. '

In the constant signal case the sign detector test statistic for

testing 0= 0 vs. 6 >0 is
n
T = I, sen(Xp) (2)

where

For a time-varying signal, the above statistic can be modified to

~ n
T = I sgn(sy)sgn(Xy) 3)
i=1
or to i %
T= I gsgn(Xy) %)
i=1

"N, L)
The statistic T is simpler to implement than T, but has a somewhat lower
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The performance of the sign detector is rather poor for noise densities

such as the Gaussian, when compared to the corresponding optimal (parametric)

B g i o

detectors and to more complex nonparametric detectors based on data ranking.
In order to obtain improved performance over that of the sign detector, without
a major increase in complexity, two schemes have been proposed based on a

higher-order partitioning of the observations. The m-interval detector has

been described in [1], and the generalized sign detector was first formulated

in [2]. In this paper we will compare the relative performances and charac-

M R, T 1 T

teristics of these two detectors. We will consider the asymptotic performance
of the detectors (for 0+0 and n*~), as well as finite-sample characteristics.

Both of these extensions of the simple sign detector have also been applied

S R

in schemes for the detection of random signals, in multi-input systems, for
sequential detection, and in other applications ([3]) - [6]). However, the
comparisions we will present for the deterministic signal case with a single
fixed-length observation vector will bring out the main features of these two

schemes.
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In the next section we describe briefly the m-interval and generalized

sign detectors, before considering their performance characteristics in

e - o

Section III.

P g

II. EXTENSIONS OF THE SICN DETECTOR

Besfhuinsves vt

Let us first assume that the signal in (1) is constant, so that Rl R 0,

i=1,2,...,n. Consider a vector a = (a veey am). where a, = -,

0’ al'

we and aj > .j-l’ J=1,2,...,m. We define intervals

B T o e e

o =].2 ‘

Ij (Ij_l. aj]. j 1.t. EEEL (5)

and denote by Nj the number of observations Xy falling {n Ij‘ Now suppose %
that the aj are quantiles of the noise distribution F, so that F(nj) = j/m. 1In §

this case the test statistic defined by

Q= IbN, ®)




=3

where b -(bl,b ,...,bm) is a deterministic weight vector, can be used to form

2
a nonparametric test for =0 vs. 6>0 in (1). This is because for any
noise distribution function F with quantiles given by a, the distribution

of Q when 6=0 is exactly known. A detector formed according to this scheme

is known as an m-interval detector [1]. Note that the sign detector

is obtained when m=2, a;=0 and bj=-1, bz=1l. It is also clear that a may
be any vector of partitioning parameters ay for which the F(aj) = pj are
known. It may be more reasonable to assume that the a vector corresponding

to the values pj-j/m can be estimated from prior data. The weight vector

b would normally be picked to result in a good compromise in performance
over some collection of possible density functions f.
Let us now assume that the noise density function is symmetric, so
that f(x) = f(-x). Let the vector a have odd-symmetry, that is, agp. 3= -ag,
£=1,2,...,m1. If f is symmetric, an odd-symmetric a would be required for
the m-interval detector if e j/m. In addition, as will be seen in the
next section, the optimum choice of a for given symmetric f is odd-symmetric.
The generalized sign detector [2] based on any odd-symmetric a vector
achieves a fixed type I error probability for any symmetric demnsity function
of the noise. 1Its test statistic is also defined by (6), but the test is
formed by a comparision with a variable threshold, with a variable random-
ization probability when Q is equal to the threshold. Note that knowledge

only of the symmetry of f is not sufficient to yield the distribution of

Q when 6= 0. Consider, however, the statistic C = (Cl,Cg,...,Cp) with

= (7) pi
CR. Nl* Nln-9.+ 1s L= Is@5veusyDs White Section
Buff Section [

where p = [m/2], the largest integer less than m/2. Now conditioned on a
C, the distribution of Q when 6 = 0 is completely defined; the distribution S—
of Ng given CR, is binomial, independent of the binomial distribution of ‘uimm- ‘

n0,/0F SPECIAL

Nj given Cj for J # L. Thus a nonparametric test can be implemented with




thresholds and randomization probabilities cémputed as functions of C.

As an example, for a four-level test (m=4) the test parameters are

functions of the scalar C} = N; + N,. It should be noted that here also

the case m=2 reduces to the sign test. This detector structure is shown in Fig. 1.

The m-interval detector is based on the assumption that the vector

of quantiles a for the noise is known, or at least that the F(aj) values
are known for the components of a given a, for the classof allowable noise
densities. Such classes of noise densities are nonparametric classes,

but are somewhat restrictive in their membership. For example, for m=3 or 4
with an odd-symmetric a vector of quantiles, only one Gaussian density

can belong to the allowable class, For m=5 and some assumed quantile vector
a, no Gaussian density (or any other parametric density with only one

or two free parameters) may belong to the allowable class. The generalized
sign detector needs a conditional structure which represents a slight
increase in implementation cost, but gives nonparametric performance for

the large class of symmetric densities for the noise. The increase in

complexity due to the conditional structure is usually nominal; for the
case where m=3 or 4, conditioning is only on the scalar Cj, and can be
easily implemented using a table look-up scheme [2]. An increase in m
from two to four generally represents a practical trade-off between improved
performance and increase in detector complexity for both the conditional
and unconditional implementations of the m-interval detector.

Since the m-interval detector is based on more specific assumptions
about the class of allowable noise densities, its detection performance
can be expected to be better than that of the conditional-test implemen=-
tation leading to the generalized sign detector. It will be found, however,
that the difference in performance is small for most cases of interest.

Before we take up the performance comparisions, we will briefly indicate
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how both detectors above may be modified for the case where the Si»
i{=1,2,....n, are not all equal.

Note that the test statistic Q of (6) can be written as (7]

T % in 8)
Q 3=1 h) =1 ij » (
where 1, xielj
zij - 1] (9)
0, otherwise

n
so that Nj = 121215. Simple modifications of Q which lead to more efficient

tests for non-constant signals may be defined as the test statistics

N m n

Q= jzlbjiglsgn(si)zij (10)
and
A m n

For the m-interval detector, it is assumed that for 0=0 the matrix Z of random
variables zij has a known distribution. For the generalized sign detector,
based on the symmetry of the noise density fuunctions, we also have a

N -~
known distribution for Z conditioned on C of (7). Thus both Q and Q can be used

for a conditional-test generalized sign detector. It is avparent thata and 6 re-

duce to ? and i. respectively, when m=2 and bz = -bl = 1.

III. PERFORMANCE CHARACTERISTICS

(a) Asymptotic Performance

The asymptotic relative efficiency (ARE) of two detectors is the ratio

of sample-sizes required by the detectors to maintain the same per-
formance (error probabilities) in the limiting case when signal strength

approaches zero, and thus sample sizes tend to infinity. In many cases the

ST P TS P SIS TP SR R



ARE of two detectors is simply the ratio of their efficacies [8], the efficacy

€ of a test based on a statistic S being defined by

d 2
um[ae E{s},. o]
e n Var TS}|e 0

(12)

Thus € is like a signal-to-noise ratio measure for weak signals.

An interesting conclusion may be drawn from the above. This is that
the ARE of the m-interval detector relative to the generalized sign detector
is unity, when a, b, are the same for both detectors, based on any one
of the three test statistics of (8), (10), or (11). Although this
follows from the fact that the efficacies are then the same for both
detectors, some care is needed in proving that this implies an ARE of
unity, since the generalized sign detector uses a conditional test.

This type of proof has been outlined in [4].

This result implies that for large sample sizes there will be very
little difference in performance between the two detectors, even though
one is based on a more specific set of assumptions about the symmetric
noise density function. This may be intuitively explained by the fact
that, in principle, for large sample sizes good estimates of the noise
quantiles may be obtained from observed data (signal-bearing or noise-
only), given that the noise density is symmetric.

From the definition of (12), it can be shown directly that g,

the efficacy of the detectors based on a'of (10), is given by

¢ 4 2 (13)
v, =7 ELl [f(a,_)) f(aj)}

m
jh j (F(a,) - F(a, )] - {450, [FGa,) - Fla, )Y

N R B 5

e =




AR, =
2ot n
2 _ 1lim 1 - 9 B
where s™ = il igl sf. For Q, the efficacy € is given by (13) with s2
n
2 1 2 2. 2 ;
replaced by |s[* = %i: [E- 121 |si|] . Note that rE] <82, It is easily

shown that for given a, the best choice of b maximizing 2 or € is

f(ay-1) - f(ay)
by = K ] i PR | N SRRy 14
i F(aj) - F(aj-1) - m e

where K>0 is any constant. The optimum a vector for some assumed noise densitv
f can then also be obrained; this a is odd-symmetric for symmetric f.

The vector of quantiles is not necessarily the best choice for a for given

f. However, the quantiles may be reasonable if the detector is to be im-
plemented as a nonparametric detector for the class of allowable noise

densities whose quantiles are assumed known based on prior measurements.

(b) Finite-Sample Performance

One of the interesting questions which we now consider is the degree
of performance degradation in the generalized sign detector as compared to
the m-interval detector, for finite sample sizes and finite signals. The
numerical performance results will be obtained for the case where m=4.
Although results for higher-order partitioning can be obtained in principle
with no additional programming difficulties, the resulting computation time
requirements become rather large. As remarked earlier, the case where m=3
or 4 usually represents a reasonable compromise between improved performance
and increased complexity, In any case, the general characteristics of the
relative performances of the two detectors will remain the same for larger m.
We will also focus on the constant signal case, although again the time-varying
signal case can be analysed with more computation time and will yield

similar characteristics.

A
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In obtaining numerical results for detection power, the parameters a
and b for the detectors were chosen to yield a good compromise design
(based on the analytical efficacy expressions) for the class of noise
density functions containing the Gaussian, double-exponential and Cauchy

densities. These last two densities are often used in judging the perfor-

mance of detectors under conditions of heavy-tailed non-Gaussian noise.
For the symmetric densities and odd-symmetric a vector, we will have

ap = - , a3 = 0, and a5 = », for the case m=4., For zero-mean Gaussian

noise Adensity with variance 02, the quantiles a) and a3 are given by

aj = -a] = 0.67450. We will now assume that for the m-interval detector the
known (or estimated) quantiles of the symmetric noise distribution are
defined by the components of the above a vector with a3 = -a; = 0.6745q0
where o, is a known positive constant. This definition of the parameter a

0

may be thought of as arising from an assumption that the noise density function

is nominally Gaussian with variance 002.

The double-exponential density function is defined by

1l e -|xlV2Yo
fe (x) = o R 15)

where 02 is the variance. In this case the quantiles a; and ag are given
by a3 = -a; = 0.490l0. Thus f (x) with o = 1.37600 has the same quantiles
as the Gaussian density with variance ag for m=4,

For the Cauchy density function

1 1
nk 1 + (x/k)2

fo(x) = (16)




we have aj = -a; = k; thus k = 0.674500 gives the same quantiles (for m=4)
as the Gaussian density with variance 002.

For these symmetric densities, we find from (14) that the optimum
b vector has even symmetry, so that b, = -b; and b3 = -bj. Proceeding to find
these a symptotically optimum values as suggested in (a) above, we find that
the optimum value of b is defined by b3 = 0.2554b; for Gaussian noise with
variance 002. and by b; = b3 for both the density fe with o=1.376o0 and
the density f with k=0.6745q;. In all cases the vector a was the common vector
of quantiles, m=4. Note that this says that the sign detector is optimal for
the Cauchy density if the partitioning is based on the quantiles for m=4.

The sign detector is also the maximum-efficacy (locally optimum) detector
for double-exponential noise.

As a compromise design for the weight-vector b, we will use b3=0.5b4.
Together with the quantile vector a, this leads to an efficacy of 0.82/002 for
the Gaussian density with variance 002. an efficacy of 0.95/002 for the
double-exponential density with the same quantiles, and an efficacy of 0.80/002
for the Cauchy density with the same quantiles. Note that with the respective
optimum analog schemes, the maximum efficacies in these three cases are
{7} lloof,and 1.06/003 and 1.1/0(3. Using a sign detector on these fixed-
quantile densities, the efficacies are 0.66/003, 1.06/602 and 0.89/002,

respectively. On the other hand, using the linear sum detector which gives

2
0

zero for f, and f., respectively, with the same quantiles. Thus, the compromise

the maximum efficacy for Gaussian noise, we get an efficacy of 0.53/0 and

design where a is the quantile-vector and b is defined by b3 = 0.5b, is
seen to yield a useful design with good overall asymptotic performance

compared to the sign detector and the linear detector.

|




For the vectors a = (-=, -0.67450_, O, 0.674500, ®) and b = (-2,-1,1,2),

O!
numerical results on detection powers were obtained for sample sizes n=25

and 50, false-alarm probabilities a=10"" and 10'3 and for a range of values

of 8/¢ [for constant-signal detection so that sy=1, i=1,...n, in (1)] for

boch ¢ - ¢ interval detector and the four-level generalized sign detector.
The + t+ are given in Table I. In this table, detection probabilities
are g. - (or the three noise di¢nsity functions we have discussed pre-

* 'er 31y, ewch density function having the common quantiles defined above.
For ea.h density function detection probabilities are given for the fixed-
threshold m-interval test and the conditional generalized sign test.

Several interesting features are apparent from Table 1. As expected,
we observe that the conditional test has a power which is smaller than that
of the fixed-threshold test. It can be seen that for small values of 8/c.,
a conditior under which the efficacy of a detector is a good indication of
its detection power (for n not too small), the conditional and fixed-threshold
test powers are almost the same. We also find that in this case the variation
in detection power between the three different noise density functions is
in agreement with the variation in efficacy for these cases. As 6/00 increases,
there is a more apparent difference between the powers of the fixed-threshold
and conditional tests. However, for the Gaussian case this difference in
powers is quite nominal. Compared to the performance of the sign detector,
both the conditional and fixed-threshold tests achieve the same high degree
of improvement for Gaussian noise.

The double-exponential and Cauchy noise densities seem to lead to
somewhat larger differences in powers for the two tests. This may be due
; to the possibility that knowledge of the quantiles (m-interval fixed-

threshold test implementation) amounts to having more "information", in
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the detection context, for the broad-tailed non-Gaussian densities as
compared to the Gaussian case, so that larger sample sizes are needed
before the conditional and fixed-threshold tests have similar performances.

The detection powers in Table I also reveal that for small signal
strength the sign detector performs better for the double-exponential
density than the four-level detectors. However, it is interesting that this
performance advantage disappears for larger values of 6/0,. This is due
to the fact that although the sign detector is locally optimum for double-
exponential noise, for non-vanishing 6 the optimum detector nonlinearity
is not the hard limiter, but the "soft'" limiter function fe(x—e)/fe(x).
Thus for larger values of 6 the four-level quantizer characteristics of
the four-interval fixed-threshold and conditional-threshold detectors
give a closer match to the "soft" limiter [7], For Gaussian noise the
four-level detectors are uniformly better than the sign detector, because
the uniformly most powerful linear-sum detector is always better approxi-
mated by the four-level quantizer characteristic. For the Cauchy density,
the variations in relative performance of the four-level and sign detectors
are again explained by similar considerationms,

Although the fixed-threshold four-interval detector achieves a larger
detection power than the conditional threshold detector, it achieves a
fixed false-alarm probability provided the noise quantile vector is cor-
rectly specified. If the actual noise density function has a quantile
vector other than the assumed vector, the false alarm probability a of the
fixed threshold four-level detector will differ from the design value ag;.

The conditional-threshold implementation, on the other hand, retains the

design value of a for any symmetric noise density function.

£ mg oy
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Table II shows the effect on false alarm probabilities of a mis-match
between the design quantile vector a and the actual values of the quantile
vector for the noise density function in the fixed-threshold detector.

The first four columns of the table show the actual values of Py - F(aj\.
were F i{s the noise distribution function. The results are shown for two

different design values a, of the false alarm probability, achieved when

0
Py - 0.25, § = 1,2,3,4. It is seen that the actual value of a may differ
considerably from the design value, especially for small design values of a.
These results also show that in order to ensure a value for a which teunds
to be less than or equal to a value a,, the implemented value of the
parameter ag = -aj in a should be taken to be somewhat larper than the
nominal or estimated value. This would result {n a lowver detector power
when the nominal assumptions ave correct. Table 111 illustrates this

effect for the case of Gaussfan noise with variance Q\:‘ where the four-
level detection is based o a value ay = 0.82%) rather than the nominal
value aj = 0.674500. In this case it is seen that the conditional test
performs almost as well as, or better than, the fixed threshold detector.

In fact, the power of the conditional test in Table 111 is better than in
the corresponding situation in Table I. This {s because the optimum value

[(71.

for aj here is 0.0800
The fundamental difference between the m-interval (fixed-threshold)

and generalized sign (conditional test) detectors {s that in the latter, the

threshold and randomfzation probabfility depend on the recefved data. The

conditional test {s, nevertheless, fafrly easy to fmplement; one method

of {mplementatfon is to use a stored set of thresholds and randomizations

in a table look-up device, as described in [2]. One simplification which

may be desirable in any threshold test {s the quantization of the ran-

domization probability, to perhaps only two values zero and 0.5. This would

- "—,M, |
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also reduce storage requirements f{n the table for a conditfonal test,
only one bit now befng required for each randomization probabilfity.
In nonparametric applicatfons the design value of the false alarm

/

probability a_ would not be exceeded {f in each case the exact randomizat{ion

0
probability v fs replaced by 0.5 {f v > 0,5, and by z2ero otherwise. In
Table IV the effect on a is shown for such a quantization of r for both
the fixed-threshold and conditfonal test., These results were obtatned with
the assumption that the a vector {a the vector of quantiles, o that cach
Py =~ 0.25 (J=1,2,3,4). The results in Table IV show that the fixed-

threshold test achieves a value for a which {8 generally, but not alwavs,

closer to the design value @y

IV.  CONCLUSION

Both the fixed=threshold m=f{nterval detector and the cond{tional
goneralized sfign detector can yield a signticantly better overall detector
performance than the sfmple aign detector. In the limfting case of large
samples and vantshing signala both fmproved detectors have {dentical per-

formances. The m-interval detector achiever a slightly larger detection

power, but {s nonparametric over a restricted class of nofre denafty functfons.

The generalized sign detector has a fixed alarm probability for any sym=

metric nofne denafty function, at the expense of a minor {ncrease {n {mplemen-

tatfon complexfty. If the quantile vector {n the m={nterval detector ta
fmprecinely known, nonparametric pervtormance fs possible only with a loas
in power, For the generalired aign detector, knowledge of the quantfles {ws
not essential, but merven as a gulde in picking a good partitioning scheme

for the data.
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FIGURE CAPTION

FIGURE 1 Structure Of Generalized Sign (Conditional) Detector
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TABLE I

TABLE II

TABLE III

TABLE 1V

TABLE CAPTIONS

DETECTION POWER OF m-INTERVAL (FIXED THRESHOLD) AND

GENERALIZED SIGN (CONDITIONAL) DETECTORS , m=4

ACTUAL TYPE I ERROR PROBABILITIES a OF m~INTERVAL

DETECTOR, m=4, FOR DESIGN VALUES a,, WITH DIFFERENT

0'
pj VALUES FOR THE a VECTOR.
EFFECT ON DETECTION POWER IN m-INTERVAL DETECTOR, m=4,

OF LARGER a, PARAMETER TO MAINTAIN a WITHIN DESIGN VALUE

3
“o
EFFECT ON a OF TWO-LEVEL RANDOMIZATION PROBABILITY

(0 AND 0.5)
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TABLE 11

Parameters of actual N = 25 N = 50

noise distribution
P P Py P ag=0.01 ag=0.001 a,=0.01 a,=0.001
0.20 0.30 0.30 0.20 0.0065 0.0005 0.0065 0.0005
0.225 0.275 0.275 0.225 0.0082 0.0007 0.0082 0.0007
0.25 0.25 0.25 0.25 0.010 0.001 0.010 0.001
0.275 0.225 0.225 0.275 0.0120 0.0014 0.0119 0.0014
0.30 0.20 0.20 0.30 0.0141 0.0018 0.0141 0.0018

TABLE

III

Gaussian Noise
a3-0.8200 N =25 ay = 0.01
Fixed

8/, Threshold Conditional
0 0.0069 0.010
0.25 0.0909 0.1089
0.50 0.4142 0.4398
0.75 0.8132 0.8196
1.0 0.9763 0.9750




TABLE IV

a = quantile vector

N = 25 N = 50

Fixed Fixed
% Threshold Conditional  Threshold  Conditional
0.05 | 0.0438 0.0442 0.0490 0.0456
0.01 | 0.0092 0.0085 0.0099 0.0089
0.001 | 0.00078 0.00073 0.00092 0.00088
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